Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary search tree.
You may assume each number in the sequence is unique.
Follow up:
Could you do it using only constant space complexity?
Could you do it using only constant space complexity?
Solution:
Use a stack to simulate the pre-order traversal.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
bool verifyPreorder(vector<int>& preorder){ | |
// using stack | |
int sz = preorder.size(); | |
if(sz < 2) return true; | |
stack<int> s; | |
s.push(preorder[0]); | |
int curr_p; | |
for(int i=1; i<sz; i++){ | |
if(preorder[i]<s.top()){ // if current node is less than stack top, then go to left subtree | |
if(preorder[i]<curr_p) | |
return false; | |
s.push(preorder[i]); | |
} | |
else{ | |
while(!s.empty() && s.top()<preorder[i]){ //find curr_p such that current node is right child of curr_p | |
curr_p = s.top(); | |
s.pop(); | |
} | |
s.push(preorder[i]); | |
} | |
} | |
return true; | |
} | |
}; |
1. https://leetcode.com/discuss/52060/72ms-c-solution-using-one-stack-o-n-time-and-space
2. https://leetcode.com/discuss/52744/c-o-n-log-n-recursive-solution
3. https://leetcode.com/discuss/89904/52ms-c-o-1-space-o-n-time-commented-code
Round 2 solutoin:
Tracking the upper bound and lower bound of left and right branches. To get the separate position of the branches, use binary search.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
bool helper(vector<int>& preorder, int l, int r, int upper, int lower){ | |
if(preorder[l]>=upper||preorder[l]<=lower) | |
return false; | |
if(l==r) | |
return true; | |
int i; | |
int p0=l+1, p1=r+1; | |
while(p0<=p1&&p0<r+1){ | |
i = (p0+p1)/2; | |
if(preorder[i]>=preorder[l]&&preorder[i-1]<=preorder[l]) | |
break; | |
if(preorder[l]>preorder[i]) | |
p0=i+1; | |
if(preorder[l]<preorder[i]) | |
p1=i-1; | |
} | |
i = (p0+p1)/2; | |
bool left=true, right=true; | |
if(i!=l+1) | |
left = helper(preorder, l+1, i-1, preorder[l], lower); | |
if(i<=r) | |
right = helper(preorder, i, r, upper, preorder[l]); | |
return left&&right; | |
} | |
bool verifyPreorder(vector<int>& preorder) { | |
bool res=true; | |
if(preorder.empty()) | |
return res; | |
res=helper(preorder, 0, preorder.size()-1, INT_MAX, INT_MIN); | |
return res; | |
} | |
}; |
No comments:
Post a Comment