Friday, April 29, 2016

LeetCode Q296: Best Meeting Point (hard)

 A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
For example, given three people living at (0,0)(0,4), and (2,2):
1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Solution:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
if(grid.size()==0)
return 0;
int rows = grid.size();
int cols = grid[0].size();
vector<int> X(cols);
vector<int> Y(rows);
for(int i=0; i<rows; i++){
for(int j=0; j<cols; j++){
if(grid[i][j]==0)
continue;
int x = j;
int y= i;
for(int k=0; k<cols; k++)
X[k]=X[k]+abs(x--);
for(int k=0; k<rows; k++)
Y[k]=Y[k]+abs(y--);
}
}
int minv = INT_MAX;
for(int i=0; i<rows; i++)
for(int j=0; j<cols; j++)
minv = min(minv, X[j]+Y[i]);
return minv;
}
};
view raw Q296.cpp hosted with ❤ by GitHub

No comments:

Post a Comment