|p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at
(0,0)
, (0,4)
, and (2,2)
:1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point
(0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Solution:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
int minTotalDistance(vector<vector<int>>& grid) { | |
if(grid.size()==0) | |
return 0; | |
int rows = grid.size(); | |
int cols = grid[0].size(); | |
vector<int> X(cols); | |
vector<int> Y(rows); | |
for(int i=0; i<rows; i++){ | |
for(int j=0; j<cols; j++){ | |
if(grid[i][j]==0) | |
continue; | |
int x = j; | |
int y= i; | |
for(int k=0; k<cols; k++) | |
X[k]=X[k]+abs(x--); | |
for(int k=0; k<rows; k++) | |
Y[k]=Y[k]+abs(y--); | |
} | |
} | |
int minv = INT_MAX; | |
for(int i=0; i<rows; i++) | |
for(int j=0; j<cols; j++) | |
minv = min(minv, X[j]+Y[i]); | |
return minv; | |
} | |
}; |
No comments:
Post a Comment