Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7
and target 7
,A solution set is:
[7]
[2, 2, 3]
Solution:
Use recursive, every iteration, choose to add current number or jump to next number.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
void helper(vector<vector<int> >& res, vector<int>& candidates, int target, int idx, vector<int>& cur, int sum){ | |
if(sum == target){ | |
res.push_back(cur); | |
return; | |
} | |
if(sum>target) | |
return; | |
cur.push_back(candidates[idx]); | |
helper(res, candidates, target, idx, cur, sum+candidates[idx]); | |
cur.pop_back(); | |
if(idx+1<candidates.size()) | |
helper(res, candidates, target, idx+1, cur, sum); | |
} | |
vector<vector<int>> combinationSum(vector<int>& candidates, int target) { | |
vector<vector<int> > res; | |
if(candidates.empty()) | |
return res; | |
sort(candidates.begin(), candidates.end()); | |
vector<int> cur; | |
helper(res, candidates, target, 0, cur, 0); | |
return res; | |
} | |
}; |
No comments:
Post a Comment