Solution 1:
The initial idea is very straightforward that every time we take the node with the least number from k lists and link this node to current merged list. To speed up in every round when choosing node with smallest number, I use priority queue.
The code is in following:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Definition for singly-linked list. | |
* struct ListNode { | |
* int val; | |
* ListNode *next; | |
* ListNode(int x) : val(x), next(NULL) {} | |
* }; | |
*/ | |
class Solution { | |
public: | |
struct compare { | |
bool operator()(const ListNode* l, const ListNode* r) { | |
return l->val > r->val; | |
} | |
}; | |
ListNode* mergeKLists(vector<ListNode*>& lists) { | |
ListNode* kLists=NULL; | |
ListNode* kListsHead=NULL; | |
int k=lists.size(); | |
int endCount=0; | |
priority_queue<ListNode*, std::vector<ListNode*>, compare> heap; | |
//fill priority queue | |
for(int i=0; i<k; ++i){ | |
ListNode* p=lists[i]; | |
if(p!=NULL) | |
heap.push(p); | |
else | |
endCount++; | |
} | |
while(endCount!=k){ | |
if(heap.empty()) | |
return kLists; | |
ListNode* node=heap.top(); | |
heap.pop(); | |
if(kLists!=NULL){ | |
kLists->next=node; | |
kLists=node; | |
}else{ | |
kLists=node; | |
kListsHead=kLists; | |
} | |
node=node->next; | |
if(node==NULL){ | |
endCount++; | |
continue; | |
}else | |
heap.push(node); | |
} | |
return kListsHead; | |
} | |
}; |
Divide and conque, merge 2 lists at a time. Fastest, 36ms, beat 100%
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Definition for singly-linked list. | |
* struct ListNode { | |
* int val; | |
* ListNode *next; | |
* ListNode(int x) : val(x), next(NULL) {} | |
* }; | |
*/ | |
class Solution { | |
public: | |
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) { | |
ListNode* p=NULL; | |
if(l1==NULL) | |
return l2; | |
if(l2==NULL) | |
return l1; | |
if(l1->val<l2->val){ | |
p=l1; | |
l1=l1->next; | |
p->next=mergeTwoLists(l1, l2); | |
}else{ | |
p=l2; | |
l2=l2->next; | |
p->next=mergeTwoLists(l1, l2); | |
} | |
return p; | |
} | |
ListNode* helper(vector<ListNode*>& lists, int s, int e){ | |
ListNode* res=NULL; | |
if(s==e) | |
return lists[s]; | |
if(e-s==1){ | |
res = mergeTwoLists(lists[s], lists[e]); | |
return res; | |
} | |
int mid = (s+e)/2; | |
ListNode* l1 = helper(lists, s, mid); | |
ListNode* l2 = helper(lists, mid+1, e); | |
res = mergeTwoLists(l1, l2); | |
return res; | |
} | |
ListNode* mergeKLists(vector<ListNode*>& lists) { | |
ListNode* res=NULL; | |
if(lists.empty()) | |
return res; | |
res = helper(lists, 0, lists.size()-1); | |
return res; | |
} | |
}; |
No comments:
Post a Comment