You are given an array x of
n
positive numbers. You start at point (0,0)
and moves x[0]
metres to the north, then x[1]
metres to the west, x[2]
metres to the south,x[3]
metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with
O(1)
extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2]
,
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
,
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
,
┌───┐
│ │
└───┼>
Return true (self crossing)
Solution:
There are only three cases where the line will intersect itself.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
bool isSelfCrossing(vector<int>& x) { | |
if(x.size()<=3) | |
return false; | |
for(int i = 3; i<x.size(); i++){ | |
if(x[i-1]<=x[i-3]&&x[i]>=x[i-2]) | |
return true; | |
if(i>=4&&x[i-1]==x[i-3]&&x[i-2]<=x[i]+x[i-4]) | |
return true; | |
if(i>=5&&x[i-2]>=x[i-4] && x[i-4]+x[i]>=x[i-2] && x[i-1]<=x[i-3] && x[i-5] + x[i-1]>=x[i-3]) | |
return true; | |
} | |
return false; | |
} | |
}; |